Research

청정 그린 수소 생산과 고 부가가치 화학물질 생산 반응 및 시스템 연구
(Green hydrogen and high-valued chemicals production reaction and system research)

청정 수소, 청정 암모니아 생산 및 고효율 연료 전지 개발과 같은 전기화학적 에너지 전환 (Electrochemical Energy Conversion)을 위해 나노 구조의 전기 촉매 및 고효율 시스템을 연구합니다.
이를 통해 환경 오염 문제를 해결하고, 고 부가가치 화학물질을 생성합니다.

연구실에서 출간한 관련 논문
Journal of Colloid and Interface Science
Chemical Engineering Journal (https://doi.org/10.1016/j.cej.2022.137789)
Advanced Materials Technologies (https://doi.org/10.1002/admt.202200572)
ASC Catalysis (https://doi.org/10.1021/acscatal.2c01618)
ACS Applied Materials & Interfaces (https://doi.org/10.1021/acsami.2c05653)
Materials Letters (https://doi.org/10.1016/j.matlet.2022.131808)
Advanced Materials Technologies

전기화학적 에너지 저장 소자 연구
(Electrochemical Energy Storage)
 

충방전식 2차 전지 및 커패시터와 같은 기존의 에너지 저장 소자는 아직 성능면에서 개선해야할 것들이 많습니다. 이에 본 연구실에서는 고효율 전기촉매를 개발하고 이를 사용하여 미래형 고성능 에너지 저장 시스템에 탑재할 새로운 전극을 연구 개발합니다.

연구실에서 출간한 관련 논문
Journal of Materials Chemistry A (Front Cover Article, https://doi.org/10.1039/D2TA02584A)
Carbon Energy (Front Cover Article, https://doi.org/10.1002/cey2.207)
Chemical Engineering Journal (https://doi.org/10.1016/j.cej.2021.132086)
Applied Surface Science (https://doi.org/10.1016/j.apsusc.2020.145424)
Applied Surface Science (https://doi.org/10.1016/j.apsusc.2019.145157)

고효율 광전기촉매 설계 및 구동 메커니즘과 응용 연구
(High-efficiency photoelectrocatalyst design and driving mechanism and application research)

자연 광합성에서 영감을 얻은 인공 광합성은 환경 문제와 연료 문제를 모두 해결하는 솔루션으로 간주됩니다. 이에 기존 전기촉매의 성능을 향상시키기 위한 고효율 광전기촉매를 설계하고 구동 메커니즘과 응용을 연구합니다.

연구실에서 출간한 관련 논문
Chemical Engineering Journal (https://doi.org/10.1016/j.cej.2022.135503)
Ceramics International (https://doi.org/10.1016/j.ceramint.2020.09.261)
Journal of Catalysis (https://doi.org/10.1016/j.jcat.2020.06.012)
Materials ( https://doi.org/10.3390/ma13010210)
Materials (https://doi.org/10.3390/ma13010012)

전산 모델링과 계산을 통한 최적의 촉매 설계
(Multiscale Modeling and Calculation)
 

대상 반응에 대한 대략적인 전기촉매를 실험에 앞서 설계하기 위해 전산 모델링과 계산을 활용합니다. 실험 전 미리 시행된 모델링과 계산에 의한 데이터를 바탕으로 우수한 촉매를 디자인함으로써 더 빠르고 효과적인 촉매 합성이 가능합니다. 또한 실제 실험 결과로부터 반응 메커니즘을 밝혀내어 촉매의 뛰어난 성능에 대한 이유를 뒷받침할 수 있습니다.

연구실에서 출간한 관련 논문
Materials Transactions (10.2320/matertrans.MT-MB2022011) 

양성자 전도성인 고체 전해질 개발
(Development of Proton Conducting Solid-state Electrolytes)
 

소자 구동의 환경 인자에 무관한 양성자 전도성 물질을 고체 전해질로 사용하여 다양한 전기화학 및 열화학 공정의 효율을 향상시키고자 합니다.


연구실에서 출간한 관련 논문
A

고성능 나노갭 임피던스 센서 연구
(Research of high performance nanogap impedimetric sensor)
 

전기적 센서 구동시 나타나는 신호 손실의 최소화로 시료 내 발생하는 미묘한 변화 및 시료의 고유한 특징을 고감도로 검출 및 식별하는 연구를 진행합니다.

연구실에서 출간한 관련 논문
Biosensors and Bioelectronics (https://doi.org/10.1016/j.bios.2021.113042)
Biosensors and Bioelectronics (https://doi.org/10.1016/j.bios.2018.07.050) 

수분 및  열에 매우 안정한 양자점 소재 개발
(Development of Ultrastable Quantum Dots toward Moisture and Heat)

수분과 열에 매우 안정하며 우수한 물리화학적 특성을 갖는 양자점을 개발하여 다양한 분야에 적용하는 연구를 수행합니다.

참고문헌
Advanced Materials (https://doi.org/10.1002/adma.202001868)
Journal of Physical Chemistry C (https://doi.org/10.1021/acs.jpcc.0c11580)

나노 다공성 물질을 이용한 양자점 합성 및 응용연구
(Synthesis of quantum Dots using Nano Porous Materials and Application Research)

참고문헌
The Journal of Physical Chemistry C (https://pubs.acs.org/doi/10.1021/acs.jpcc.6b04369)
The Journal of Physical Chemistry C (https://pubs.acs.org/doi/10.1021/acs.jpcc.9b08812)
Materials Today Chemistry (https://doi.org/10.1016/j.mtchem.2021.100715)

차세대 수계 전지 개발
(Development of Next-generation Aqueous Batteries)
 

 친환경적이며 더욱 안정적으로 구동이 가능한 전이금속 기반 차세대 이차 전지를 개발하며 고효율 전극을 개발하고자 합니다.

연구실에서 출간한 관련 논문

전기화학적 암모니아/요소 생산
(Electrochemical Ammonia/Urea Production)

친환경 및 상용화를 위하여 전기화학적 암모니아/요소 생산을 위한 촉매와 시스템 연구를 진행합니다.

연구실에서 출간한 관련 논문
Applied Catalysis B: Environmental (https://doi.org/10.1016/j.apcatb.2023.122485)
ACS Applied Materials & Interfaces (https://doi.org/10.1021/acsami.3c07947)
Journal of Colloid And Interface Science (https://doi.org/10.1016/j.jcis.2022.11.052)
Electrochemical Energy Reviews (https://doi.org/10.1007/s41918-023-00186-6)
Nano Convergence (https://doi.org/10.1186/s40580-019-0182-5)
Frontiers in Chemistry (https://doi.org/10.3389/fchem.2023.1122150)

DFT 계산을 통한 최적의 촉매 설계
(Optimal Catalyst Design via DFT Calculation)

제일원리 DFT 계산은 컴퓨팅 시스템을 활용하여 실제세계에서의 촉매의 성능과 선택성을 미리 예측해보고 검증할 수 있습니다.

연구실에서 출간한 관련 논문
Applied Catalysis B: Environmental,  https://doi.org/10.1016/j.apcatb.2023.122485 

다공성 물질을 활용한 전고체 배터리 소재 연구 및 개발

(Research and Development of Solid-State Battery Utilizing Porous Materials)

에너지밀도를 높이고 안정성을 향상시켜 배터리의 성능을 증대시키는 

연구를 수행합니다.

연구실에서 출간한 관련 논문

청정수소 생산을 위한 암모니아 산화 반응 연구
(Ammonia Oxidation Reaction for Production of Green Hydrogen)

 무탄소 및 향상된 수소 생산을 위한 전기화학적 암모니아 분해를 위한 촉매 반응 및 시스템 연구를 수행합니다.

연구실에서 출간한 관련 논문
Chemical Engineering Journal, (https://doi.org/10.1016/j.cej.2023.142314)

Materials Chemistry Frontiers (https://doi.org/10.1039/D3QM00291H )

Our laboratory focuses mainly on the development of nanomaterials for energy production, conversion, and storage, as well as of renewable energy produced by photo- or electrochemical reactions to create a future sustainable energy system. In order to understand the exact underlying mechanisms of these reactions and to enhance conversion efficiency, we perform in-depth analysis at the surface of the electrode or catalyst and at the interface between electrode and electrolyte. 

Electrochemical Energy Conversion

Our research group has studied nanostructured electrocatalysts for efficient energy conversion to generate high-valued chemicals and reduce environmental pollutants. To develop the appropriate electrocatalysts for specific energy conversion reactions, we have focused on the catalytic properties utilizing electrochemical tests and multiscale modeling and calculation. Based on these data, we have synthesized electrocatalysts with enhanced efficiency.

Electrochemical Energy Storage

We have developed new electrodes for increasing energy storage efficiency including power density, energy density, and cycle life. To come up with a novel and proper electrode, our approach is to study the storage properties through various morphological and physicochemical analyses and multiscale modeling and calculation. Based on these insights, we have designed new electrodes to build a high-performance energy storage system for the future.

Artificial Photosynthesis (Photoelectrocatalysis)

Artificial photosynthesis, which is inspired by natural photosynthesis, has been considered as the solution to solve both environmental and fuel problems. We have been investigated the fundamental mechanism and the various application of photo-electrocatalysts to enhance the performance of conventional electrocatalysts.

Multiscale Modeling and Calculation

Our research group has utilized computational modeling and calculation to design the approximate electrocatalysts for target reactions. Based on these data, we could synthesize the specific materials, which are assumed to have superior catalytic properties. Contrariwise, these computational calculations could uncover the forbidden reaction mechanism between the electrocatalyst and the target reaction, and support the reason why the electrocatalyst has an outstanding performance of the reaction.

Development of Proton Conducting Solid-state Electrolytes

Proton-conducting materials are a class of solid-state ion-conducting materials that demonstrate significant proton conductivity at moderate temperatures (e.g., 100–600 °C). By enabling proton-mediated electrochemistry under both dry and humid environments, proton-conducting materials provide unique opportunities for enhancing or synergizing a variety of complementary electrochemical and thermochemical processes. Because of this potential, our research group has been devoted to developing new proton-conducting materials with application-oriented insights.


Development of Next-generation Aqueous Batteries 

The aqueous secondary batteries have gained attention as promising energy storage devices due to their safety and cost-effectiveness. With the development of efficient catalysts for the cathode, various configurations of secondary battery systems, such as Metal-Air, Metal-N2, and Metal-I2, can be designed. Because of this potential, our research group has been devoted to developing next-generation aqueous batteries.


Optimal  Catalyst Design via DFT Calculation

By utilizing DFT, we can model and predict the electronic structure and properties of various catalytic materials at the atomic level. This allows us to systematically explore the potential energy surfaces and reaction pathways, identifying optimal catalyst compositions and structures that minimize energy barriers and maximize reaction rates. Our research group has been devoted to discovering and optimize new catalysts but also provides deep insights into the fundamental mechanisms governing catalytic activity


Research and Development of Solid-State Battery Utilizing Porous Materials

 Incorporating porous materials enhances ionic conductivity and increases the surface area for electrochemical reactions, resulting in improved battery performance and safety. Our approach involves synthesizing and characterizing novel porous frameworks that can serve as solid electrolytes or electrode materials, ensuring stability and compatibility within the battery architecture. Our research and development on solid-state batteries utilizing porous materials aim to revolutionize energy storage technology by addressing the limitations


Ammonia Oxidation Reaction for Production of Green Hydrogen

By optimizing the AOR process, we aim to create a viable pathway for hydrogen production that leverages ammonia as a hydrogen carrier, due to its high hydrogen content and ease of storage and transport. Our research involves designing and testing advanced catalysts that can facilitate the oxidation of ammonia at lower temperatures and higher conversion rates, while minimizing the production of harmful byproducts such as nitrogen oxides. Through a combination of experimental investigations and computational modeling, we gain insights into the reaction mechanisms and kinetics, enabling us to fine-tune the catalytic materials and reaction conditions..